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Abstract— Advances in sensing and tracking technology enable 
location-based applications but they also create significant privacy 
risks. Anonymity can provide a high degree of privacy, save service 
users from dealing with service providers’ privacy policies, and reduce 
the service providers’ requirements for safeguarding private 
information. However, guaranteeing anonymous usage of location-
based services requires that the precise location information 
transmitted by a user cannot be easily used to re-identify the subject. 
This paper presents middleware architecture and algorithms that can 
be used by a centralized location broker service. The adaptive 
algorithms adjust the resolution of location information along spatial 
or temporal dimensions to meet specified anonymity constraints based 
on the entities who may be using location services within a given area. 
Using a model based on automotive traffic counts and cartographic 
material, we estimate the realistically expected spatial resolution for 
different anonymity constraints. The median resolution generated by 
our algorithms is 125 meters. Thus, anonymous location-based 
requests for urban areas would have the same accuracy currently 
needed for E-911 services; this would provide sufficient resolution for 
way finding, automated bus routing services and similar location-
dependent services.  

 
I. INTRODUCTION 

The low cost and small size of positioning equipment (e.g., 
GPS receivers) have allowed their embedding into PDAs 
and mobile phones. The wide availability of these location- 
aware portable devices has given rise to a flourishing 
industry of location-based services (LBS). An LBS makes 
spatial data available to the users through one or more 
location servers (LS) that index and answer user queries on 
them. Examples of spatial queries could be “Where is the 
closest hospital to my current location?” or “Which 
pharmacies are open within a 1 km radius?”. In order for 
the LS to be able to answer such questions, it needs to know 
the position of the querying user. When a user u wishes to 
pose a query, she sends her location to a trusted server, the 
anonymizer (AZ), through a secure connection (e.g., SSL). 
The latter obfuscates her location, replacing it with an 
anonymizing spatial region (ASR) that encloses u. The 
ASR is then forwarded to the LS. Ignoring where exactly u 
is, the LS retrieves (and reports to the AZ) a candidate set 
(CS) that is guaranteed to contain the query results for any 
possible user location inside the ASR. The AZ receives the 
CS and reports to u the subset of candidates that 
corresponds to her original query. In order for the AZ to 
produce valid ASRs, the users send location updates 
whenever they move (through their secure connection). The 
described model is shown in Figure 1 

 
Fig 1.  Location based service provider 

II. RELATED WORK 
Section II.I reviews related work on road network databases 
and Section II.II surveys the literature on spatial anonymity. 

II.I  SPATIAL QUERY PROCESSING IN ROAD NETWORKS 
In general, a road network can be modeled as a eighted 
graph G = (N;E). N contains the network nodes, while E is 
the set of edges. Nodes n in N model road intersections, 
locations of road turns, or positions where traffic conditions 
change (e.g., a street gets narrower). On the other hand, 
every edge e connects two nodes and is associated with a 
non-negative weight w(e). Weight w(e) may represent, for 
instance, the traveling time from one node to the other. 
Figure 2 shows an example of a road network. Edge n1n2 
has weight 3, and its endpoints are nodes n1 and n2. Let p 
be a point on an edge e with weight w(e). The partial 
weight from p to an end-node of e is proportional to their 
(Euclidean) distance, while the sum of the two partial 
weights is equal to w(e). For instance, object o1 (shown as 
a solid point) lies on edge n3n4 and has partial weights 1 
and 3 from nodes n3 and n4, respectively. Similarly, user u 
(the hollow point) falls on edge n2n3 and both of its partial 
weights are 2. 

 
Fig. 2. Road network example 

 
The network distance dN(u; o) between a user u and an 
object o is defined as the sum of edge weights along the 
shortest path (in the network) from u to o. In our example, 
the network distance dN(u; o1) between user u and object 
o1 equals to 2+1=3. Its derivation is strongly related to 
shortest path computation. In case of a small network, main 
memory shortest path algorithms (e.g., Dijkstra’s 
algorithm) can be applied to compute dN(u; o). Otherwise, 
disk-based data structures are utilized. Query Processing by 
Network Expansion. Users are often interested in location-
based queries such as r-range and Knn queries, in the 
context of a road network. Given a distance threshold r and 
a user location u, the r-range query returns all objects 
within (network) distance r from u. On the other hand, the 
kNN query retrieves the k objects that are closest to u. In 
the rest of the paper, the term distance refers to the network 
distance, and the r-range and kNN queries refer to their 
network versions (unless otherwise specified). developed 
efficient indexing and processing methods for the above 
queries. T hey proposed the  following disk-based 
structures for indexing the road network and the data 
objects: (i) the adjacency index packs adjacency lists of 
network nodes into disk blocks, (ii) the edge R-tree 
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spatially indexes the network edges, and (iii) the object R-
tree (ORT) organizes the locations of the data objects 
Network expansion is a well-known technique for 
evaluating r-range and kNN queries. Starting from the user 
location u, it discovers objects on encountered edges while 
traversing the network like Dijkstra’s algorithm, until the 
query results (i.e., data objects of interest) are found. 
Suppose that, in Figure 2, user u issues a range query with r 
= 9. First, we access the adjacency index to identify edges 
within the query range, following the steps in Table 1. A 
min-heap H is employed for organizing entries of the form 
(ni; dN(u; ni))(for encountered nodes ni) in ascending order 
of distance dN(u; ni). In our example, the edge n2n3 
containing u is initially identified, and its end-nodes n2 and 
n3 (both with distance 2) are inserted into H. In each 
iteration, the node ni with the minimum distance is de-
heaped from H, its incident edges ninj are recorded, and its 
adjacent unvisited nodes nj (having dN(u; nj) within the 
range) are inserted into H.Tthe first three steps of Table 1, 
edges n2n3, n2n1, and n3n4 fall completely within the 
query range. However, at step 4 the de-heaped node n1 has 
distance 5 from u and only the partial edge n1n5(4) lies 
within the range r = 9. The process  ontinues until H 
becomes empty. Having discovered the relevant edges, we 
probe the ORT to retrieve the result objects, o1 and o2. 
 

 
 

II.II INCOG LOCATION-BASED QUERIES 
Recently, considerable research interest has focused on 

preventing identity inference in location-based services. 
Studies in this area typically assume the model described in 
Section 1, proposing spatial cloaking (i.e., location 
obfuscation) techniques. In the following, we describe 
existing techniques for ASR computation (at the AZ) and 
query processing (at the LS). At the end, we cover 
alternative location privacy approaches and discuss why 
they are inappropriate to our problem setting.Spatial 
Cloaking at the AZ. In general, the AZ applies the concept 
of K-anonymity to hide the querying user location u. The 
idea is to compute an anonymizing spatial region (ASR), 

containing u and at least  K - 1 other user locations. This 
offers privacy protection in the sense that the actual user 
position u cannot be distinguished from others in the ASR, 
even when malicious LS is equipped/advanced enough to 
possess all user locations. This spatial K-anonymity model 
is most widely used in location privacy 
research/applications, even though alternative models are 
emerging. Casper  is the first work on efficient and scalable 
AZ implementation for ASR computation. A quad-tree is 
utilized for indexing user locations and deriving ASRs. 
Suppose that the AZ needs to compute a 2-anonymous 
region (i.e., K=2) for querying user u1 in Figure 3(a). The 
AZ first locates the leaf quad that contains u1 and traverses 
the tree pwards until it identifies a region covering at least 
K users (including u1). In this case, the AZ derives 

rectangle R1;2;3 (containing three users) as the 2-
anonymous region of u1. 

 
Fig 3: Spatial K-anonymous cloaking, K=2 

III. OBFUSCATION 
Obfuscation is the process of degrading the quality of 

information about a person’s location, with the aim of 
protecting that person’s location privacy. The term 
“obfuscation” is introduced, but several closely related 
concepts have been proposed in previous work. The “need-
to-know principle” aims to ensure that individuals release 
only enough information that a service provider needs to 
know in 
order to provide the required service. The idea of a need-to-
know principle is closely related both to obfuscation and 
the fundamental fair information practice principle of 
consent and use. Snekennes investigates a privacy policy-
based approach to enforcing the need-to-know principle in 
location aware computing by adjusting precision of location 
information 
The work in develops and tests an algorithmic approach to 
obfuscating proximity queries based on imprecision. A 
simplified version of the algorithm introduced in  is 
summarized in. The algorithm assumes a graph-based 
representation of a geographic environment (for example, a 
road network). An individual protects his or her location 
privacy by only reporting a set O of locations (an 
obfuscation set), one of which is that individual’s actual 
location (figure 3.1a). For an obfuscation set O, the 
location-based service provider must compute the relation d 
(figure 3.1b), where od p means o, p � O are most proximal 
to the same point of interest (POI). The algorithm then 
proceeds according to three possibilities. First, all the 
locations in the obfuscation set may be most proximal to a 
single POI (O � O/d ), in which case that POI can be 
returned to the Second, the individual may agree to reveal a 
more precise representation of his or her location, in which 
case the algorithm can reiterate. Otherwise, the best 
estimate of the most proximal POI us returned . The 
analysis in  shows that efficient mechanisms for computing 
the relation d can ensure that the entire algorithm has the 
same computational (time) complexity as a conventional 
algorithms for proximity queries, and that the algorithm 
must terminate in a finite number of iterations. Obfuscation 
has several  important advantages that complement the 
other privacy protection strategies. Obfuscation and 
anonymity are similar, in that both strategies attempt to hide 
data in order to protect privacy. The crucial difference 
between obfuscation and anonymity is that while 
anonymity aims to hide a person’s identity, obfuscation is 
an explicitly spatial approach to location privacy that aims 
to allow a person’s identity to be revealed. Potentially, this 
combats one of the key limitations of anonymity 
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approaches: the need to authenticate users. At the same 
time, degrading the quality of location information makes 
inferring identity from location more difficult. Obfuscation 
is flexible enough to be tailored to specific user 
requirements and contexts, unlike regulatory strategies; 
does not require high levels of complex infrastructure and is 
less vulnerable to inadvertant disclosure of personal 
information, unlike privacy policies; and is lightweight 
enough to be used without the need for trusted privacy 
brokers, unlike many anonymity approaches. Obfuscation 
aims to achieve a balance between the level of privacy of 
personal information and the quality of service of a 
location-based service. Current research has indicated that 
there exist many situations where it is  possible to expect 
high quality location-based services based on low quality 
positional information . Consequently, in situations where 
the user requires a higher quality of service than can be 
achieved at a user’s minimum acceptable level of privacy, 
then other privacy protection strategies must be relied upon 
instead. Further, obfuscation assumes that the individual is 
able to choose what information about his or her location to 
reveal to a service provider. While this may be realistic 
when using client-based or network-assisted positioning 
systems and when sharing location information with a third 
party location-based service provider, dealing with the 
entities that administer network-based positioning systems 
still requires privacy protection based on regulatory or 
privacy policy approaches. 

 
Fig 4 : location privacy and location-aware computing 

 
IV NETWORK-BASED ANONYMIZATION 

In this section, we present the cloaking algorithm of our 
NAP framework. Our primary objective is to guarantee 
reciprocity based anonymity. In NAP, the AZ  nonymizes u 
with a set of line segments/edges instead of a spatial region 
(ASR). The crux of our cloaking method is to utilize a 
global edge ordering; i.e., an ordered sequence that contains 
all network edges exactly once. The edge ordering is 
setting-sensitive, i.e., it specifies which end-node of the 
edge precedes the other. We refer to the position and setting 
of an edge in the ordering as the edge order and the edge 
setting, respectively. To avoid confusion, the setting of an 
edge depends solely on the ordered sequence, and has 
nothing to do with the  direction (in the case of directed 
networks) of the road segment it models. Figure 5(a) shows 

a road network, and an ordering of its edges. The number 
next to each edge indicates its order and the arrow its 
setting. The edge ordering defines an implicit linear order 
among the users themselves. In particular, a user u precedes 
another u0 if the edge of u has smaller order than that of u0. 
If they fall on the same edge ninj (with setting from ni to nj 
), u precedes u0 if it is closer to ni. Ties among coinciding 
users are resolved arbitrarily. This  recedence relationship 
defines the order ordu of each user u. The position of a user 
in the defined sequence is referred to as the user order. The 
example in Figure 5(a) contains 10 users whose subscript 
indicates their order (i.e., user u3 has order 3, 
etc).Reciprocity in NAP is achieved by conceptually 
partitioning the user ordering into buckets of K users each, 
and forwarding to the LS the edges corresponding to the 
bucket of the querying user u. This set of edges is called the 
Anonymizing Edge List (AEL) of u. Specifically, let U be 
the set of users registered with the AZ and assume that a 
querying user requires anonymity of degree K. Set U is 
partitioned into B = bjUj=Kc buckets, each containing K 
users, except the last one which may contain up to 2 _K 

�1; the i-th bucket bi (for i < B) consists of users with 

order from (i � 1) _ K + 1 to i _ K, and the B-th is assigned 
the remaining ones. Consider the network in Figure 5(a), 
where jUj = 10, and assume that u6 poses a query with 
anonymity requirement K = 3. This results into 3 buckets, 
b1 = fu1; u2; u3g, b2 = fu4; u5; u6g, and b3 = fu7; u8; u9; 
u10g. User u6 belongs to b2 and is anonymized together 
with the other users in it. The boundary users (i.e., first and 
last) of b2 are u4 and u6, whose edges have orders 5 and 7. 
The AEL is formed by collecting all edges with orders 
between 5 and 7; i.e., it comprises edges n6n8, n8n9, and 
n9n2, shown bold. We follow the above global edge/user 
ordering approach, because a local one could lead to 
privacy breach in a way similar to Figure 3(a) for Casper. 
Specifically, upon interception 
of an AEL generated by our method, one cannot infer who 
among the users in the corresponding bucket was the 
querying one. In other words, the AEL for any user in the 
same bucket is identical, and therefore an adversary cannot 
pinpoint the query originator with a probability higher than 
1=K (recall that each bucket contains K or more users). 
Hence, our cloaking method satisfies reciprocity. 
Reciprocity, in turn, is a sufficient condition for anonymity 
[23] and, thus, NAP guarantees K- anonymity to the 
querying users. In the rest of this section, we describe edge 
ordering strategies. Then, we present particular techniques 
for the anonymization procedure. Finally, we analyze the 
properties of the proposed edge orderings. 

 
Fig 5: Edge ordering 
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V ANONYMIZATION PROCEDURE 
 

Given an edge ordering, the next question is how AEL 
computation can be implemented efficiently at the AZ. 
Parameter K is not known in advance and varies, since 
different users have different anonymity requirements, and 
even queries by the same user may specify different K, 
depending on the nature of the queried data. As buckets are 
defined according to K, they cannot be explicitly 
materialized. Instead, the AZ employs an index that keeps 
the users sorted on their order and allows efficient AEL 
computation for arbitrary K. The index is an aggregate B-
tree (similar to an aggregate R-tree), whose internal nodes 
keep for each child the number of users in the 
corresponding sub-tree. Figure 6 shows this tree in the 
example of Figure 5(a). For each user (e.g., u6) we store the 
ID of the edge it falls on (n9n2), the edge’s order (7), and 
its distance from the edge’s first end-node (jn9u6j). The 
latter two values are used (primarily the edge order and 
secondarily the distance from the first end-node) as the 
sorting key of the tree. 

 
Fig 6: Aggregate B-tree 

 
In Figure 6 the numbers in the shaded boxes correspond to 
the aggregate information maintained, i.e., the cardinalities 
of the sub-trees rooted thereof. Note that we use a B-tree 
instead of a B+-tree (i.e., user information is also stored in 
internal nodes), because it is faster for in-memory indexing. 
 

V.I ANONYMOUS QUERY PROCESSING 
In this section we describe AEL query processing at the LS;  
we present algorithms for minimal and inclusive CS 
computation for a single query, we propose additional 
optimizations for the case where multiple AEL queries are 
processed in a batch. we demonstrate the generality of NAP 
with respect to the network storage scheme used at the LS. 

a) Single Query Processing 
Processing is based on a direct implementation of the 
theorem uses (network-based) search operations as off the- 
shelf building blocks. Thus, the NAP query evaluation 
methodology is readily deployable on existing systems, and 
can be easily adapted to different network storage schemes, 
as we discuss in Section 5.3. As a case study, in this section 
we focus on the storage scheme and the network expansion 
framework, in order to provide a concrete NAP prototype. 

 
 

b) Batch query processing 
The LS processes queries in discrete timestamps, and 
multiple AEL-based queries may be arriving in the same 
timestamp. In this case, the queries are evaluated in a batch. 
Below we propose strategies aiming at maximizing 
computation sharing among different queries. 
 

VI EXPERIMENTAL EVALUATION 
we evaluate the robustness and scalability of  our proposed 
methods on a real road network. Our algorithms were 
implemented in C++ and experiments were executed on a 
Pentium D 2.8GHz PC. We measured the average of the 
following performance values over a query workload of 100 
queries: (i) anonymization time and refinement time at the 
anonymizer AZ, (ii) I/O time and CPU time for query 
processing at the location server LS, and (iii) the 
communication cost (in terms of transmitted points) for the 
anonymizing edge list AEL and the candidate set CS. 
Scalability Experiments 
In this section, we investigate the scalability of NAP with 
respect to various factors. To provide an indication of the 
space requirements, we note that for the largest tested data 
sizes (i.e., jUj=200000 and jOj=1024000), the AZ uses only 
12.5 MBytes of main memory  (including the network 
graph) and the LS needs a total of 23.5 MBytes hard disk 
storage. End-to-end time. Before a lower level study, we 
present an experiment on the overall response latency. 
Specifically, from the user’s viewpoint, the end-to-end time 
captures the elapsed time between issuing a query and 
obtaining the results. It includes the processing time at AZ, 
the computation time at LS, and the communication time 
between AZ and LS. 

 
 

Fig 7: End-to-end time vs. anonymity degree K 
 
Figure 7 shows the end-to-end time as a function of the 
anonymity degree K, assuming a communication bandwidth 
of 10Mbps. Clearly, the processing cost at LS dominates 
the end-to-end time, while the communication (between AZ 
and LS) and the AZ computations account only for a small 
percentage of the total time. It is worth mentioning that the 
processing (including anonymization and refinement) at AZ 
takes 0.000620 seconds for RE. HN and DF have similar 
costs. This implies that the AZ is capable of serving 1600 
requests per second. 
 

CONCLUSION 
In this paper, we propose the network-based anonymization 
and processing (NAP) framework, the first system for K- 
anonymous query processing in road networks. NAP relies 
on a global user ordering and bucketization that satisfies 
reciprocity and guarantees K-anonymity. We identify the 
ordering characteristics that affect subsequent processing, 
and qualitatively compare alternatives. Then, we propose 
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query evaluation  techniques that exploit these 
characteristics. In addition to user privacy, NAP achieves 
low computational and communication costs, and quick 
responses overall. It is readily deployable, requiring only 
basic network operations. In the traditional spatial 
anonymity model, the data owner (e.g., a location-based 
service) makes its data available using a location server. It 
may, however, be the case that the owner is outsourcing its 
database to a third-party (and, thus, untrusted) location 
server. A challenge here is how to encrypt the owner’s data 
so that they are hidden from the location server, while it can 
still process anonymous queries. Another interesting 
question is how (anonymous) users could verify that the 
location server did not tamper with the original owner data. 
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